Abstract

Hepatitis C virus (HCV) infection is a serious threat to global health. NS3 serine protease is one of the most advanced HCV drug targets. However, the high mutation rate makes many protease inhibitors ineffective and allows viral replication to continue. To investigate the structural basis of the molecular mechanism of HCV resistance to inhibitors, molecular dynamics and molecular mechanics Poisson–Boltzmann/surface area calculations were carried out on HCV NS3 serine protease–BI201335 complexes. The drug resistance to BI201335 is explained by the fact that seven single mutations weaken the biological activity by lessening the sum of electrostatic interactions in the gas phase and polar solvation. The computational results demonstrate that the mutations affect the BI201335 binding through direct and indirect mechanisms. Seven single mutations lead to significant changes in the conformation, such as the shifts of the side chain of His57 and Lys136 and the movement of the P2 group of BI201335 towards the solvent. Furthermore, the contributions of Lys136 significantly decrease, which is the most major binding attraction. The shifts of the side chain of His57 induce the lack of hydrogen bond between His57 with Asp81 expert for D168G mutation. Detailing the molecular mechanisms of BI201335 drug resistance provides some helpful insights into the nature of mutational effect and aid the rational design of potent inhibitors combating HCV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call