Abstract

There are many physical phenomena and properties associated with diffusion in linear friction welding (LFW) process. Many of these phenomena are not observable by known and conventional methods. The molecular dynamics (MD) is an advantageous and practical method to study the diffusion process and atomic behavior of welded materials. In the current research, we used MD simulations to model the LFW process between copper and nickel metals. The effect of defects in the structures and also the addition of alloying elements to the copper structure was also studied. Our findings revealed that the surface and subsurface imperfections in the copper structure were gradually eliminated in the friction stage. In contrast, these imperfections in nickel structure disappeared in the forging stage. Also, we showed that adding alloying elements to copper structure leads to an increase in the amount of the mean square displacement (MSD) of the atoms and the diffusion coefficient in copper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.