Abstract

Understanding multicomponent diffusion in polymers on the molecular-scale could lead to optimization of many practical processes. One important example is the removal of a toxic chemical (penetrant) from polyurethanes, which serve as the binder in many coatings technologies. This work is an equilibrium molecular dynamics (MD) study to characterize the molecular-scale hydrogen bonding (H-bonding) interactions in ternary penetrant, solvent, and polyurethane systems, and how these H-bonds influence the corresponding diffusivities. Homomorphic series of penetrant and solvent species in which molecular size and shape are kept constant while varying polarity or number of H-bonding sites are used to study the influence of hydrogen bond probability and strength on diffusivity. It is found that H-bonding between all species in the ternary mixture as well as penetrant-solvent collisions play a role in determining penetrant diffusivity. The findings provide insight into solvent selection criteria to increase the diffusivity of H-bonding penetrants that are absorbed in polyurethanes for extraction and decontamination applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.