Abstract

In this study, two typical components in industrial flue gas (SiO2 solid particle and H2O vapor) was selected as a solid-gas system, the transport properties were investigated by equilibrium molecular dynamics (EMD) simulation with three different concentrations of solid phase systems established over the actual temperature range (1000–1400K) of industrial flue gas. The number of hydrogen bonds was counted and the radial distribution function in the system was obtained to analyze the microstructure of the system. The thermal conductivity, viscosity and diffusion coefficient were calculated and the effects of temperature and solid concentration on the transport properties were investigated. The predicted values of transport properties are in good agreement with the available experimental data. The results show that with the diffusion of water molecules, polar water molecules form hydrogen bonds with silica and other water molecules, and as the temperature increases, the average number of hydrogen bonds of water molecules decreases and the stability of the system decreases. Simultaneously, with the increase of temperature, the thermal conductivity and viscosity of the system increase, when the concentration of the solid phase in the system increases, both the thermal conductivity and the viscosity increase at the same temperature. This study improves the understanding of transport characteristics of industrial flue gas from the microscopic point of view, which is significant to the dust purification and waste heat recovery technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.