Abstract
Phospholamban (PLB) is an integral membrane protein of 52 residues that regulates the activity of the sarcoplasmic reticulum calcium pump in cardiac muscle cells through reversible phosphorylation of Ser16. To explore its possible conformations and dynamics in a monomeric state, we have performed comparative molecular dynamics simulations of unphosphorylated and phosphorylated PLB (pPLB) with various orientations in POPC membranes. The simulations indicate that dynamics of the cytoplasmic domain is highly dependent on its interactions with membranes, that is, large conformational changes in the absence of membrane interactions, but very restricted dynamics in their presence. pPLB shows more structural flexibility in its cytoplasmic domain, which is consistent with experimental observations. We have also performed a simulation of a PLB pentameric structure (the so-called bellflower model), recently determined in micelles, to investigate its behaviors in a POPC membrane. The cytoplasmic domain in each monomer shows uncorrelated dynamics and undergoes large conformational changes toward the membrane surface during the simulation, which supports the so-called pinwheel model of the PLB pentamer structure. The hydrophobic nature of the pentameric pore excludes water molecules in the pore region, which illustrates that the pore appears to be an energetic barrier for ion and water translocation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have