Abstract
The mechanical properties of an ultrathin film made from a thermoplastic differ from the bulk due to the presence of the free surface. Here, molecular dynamics simulations are used to explore the thickness dependence of uniaxial and equi-biaxial tensile responses of polymethyl methacrylate (PMMA) films. The sensitivity of deformation response to temperature, molecular weight and the degree of side-branching is determined. We find that the tensile failure strain decreases with decreasing film thickness, temperature, and with decreasing molecular weight. The degree of side-branching plays a secondary role in dictating the tensile response. Failure is by the initiation of voids at the free surface, followed by the expansion of the voids in the thickness direction. Recent solid−state nanofoaming experiments and models suggest that the attainable porosity of nanofoams is less than that of macro−scale foams due to the reduced ductility of the cell walls of the nanofoam. Our results provide a physical explanation for this observation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.