Abstract
Molecular dynamics (MD) simulations were used to study vapor-liquid equilibrium interfacial properties of n-alkane and n-alkane/CO2 mixtures over a wide range of pressure and temperature conditions. The simulation methodology, based on CHARMM molecular mechanics force field with long-range Lennard-Jones potentials, was first validated against experimental interfacial tension (IFT) data for two pure n-alkanes (n-pentane and n-heptane). Subsequently, liquid-vapor equilibria of CO2/n-pentane, propane/n-pentane, and propane/n-hexane mixtures were investigated at temperatures from 296 to 403 K and pressures from 0.2 to 6 MPa. The IFT, liquid and vapor phase densities, and molecular compositions of the liquid and vapor phases and of the interface were analyzed. The calculated mixture IFTs were in excellent agreement with experiments. Likewise, calculated phase densities closely matched values obtained from the equation of state (EOS) fitted to the experimental data. Examination of the density profiles, particularly in the liquid-vapor transition regions, provided a molecular-level rationalization for the observed trends in the IFT as a function of both molecular composition and temperature. Finally, two variants of the empirical parachor model commonly used for predicting the IFT, the Weinaug-Katz and Hugill-Van Welsenes equations, were tested for their accuracy in reproducing the MD simulation results. The IFT prediction accuracies of both equations were nearly identical, implying that the simpler Weinaug-Katz model is sufficient to describe the IFT of the studied systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.