Abstract
Bile salts are surfactants in bile that facilitate digestion, adsorption and excretion of various compounds. They have planar hydrophobic and hydrophilic faces and therefore exhibit some unusual properties; including the shape and size of the micelles that they form. Molecular dynamics simulations of the spontaneous aggregation of six bile salts (cholate (CHD), glycocholate (GCH), taurocholate (TCH), glycochenodeoxycholate (GCD), glycodeoxycholate (GDX) and glycolithocholate (GLC)) were performed in an aqueous phase to gain insight into their micellar structure. The aggregates that formed spontaneously from a random distribution of molecules ranged in size from 8 to 17 molecules. The structures are highly dynamic in nature and are on average oblate, but can vary from oblate, to spherical or prolate. Intermolecular hydrogen bonding within the micelles was found to be an important factor in determining the micelle size, structure and dynamics. The molecular arrangement within the micelles maximises the hydration of the hydrophilic chains and some favourable orientations for adjacent molecules were acquired. The dynamics of the micelles were investigated using the hydrogen-bond lifetime autocorrelation function correlation time, which exhibited a relationship with the degree of hydroxylation. Comparison of the proposed model to the three literature models showed some features of the disk shaped models of Cary and Small [M.C. Cary, D.M. Small, Arch. Intern. Med. 130 (1972) 506–527] and Kawamura et al. [H. Kawamura, Y. Murata, T. Yamaguchi, H. Igimi, M. Tanaka, G. Sugihara, J.P. Kratohvil, J. Phys. Chem. 93 (1989) 3321–3326], whereas the third, inverted helix model of Giglio et al. [E. Giglio, S. Loreti, N.V. Pavel, J. Phys. Chem. 92 (1988) 2858–2862] can be discounted. The proposed model is better than the existing models, which assumed a rigid and structured molecular arrangement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.