Abstract

Molecular dynamics (MD) simulations are used to examine the disjoining pressure effect of a water thin film adsorbed on a metal surface. The model was validated against experiments and verified against previous MD simulations. The variation of vapor pressure with film thickness was examined for a water thin film adsorbed on a gold surface. The results agree well with the classic disjoining pressure theory without surface charges and show that liquid layering does not affect disjoining pressure. However, surface charges of the gold substrate enhance the disjoining pressure of the water thin film, consistent with experimental evidences for polar liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.