Abstract

In this work, molecular dynamics simulation is performed to study the density and surface tension of water for a range of temperatures from 300 to 600 K. The extended simple point charge interaction potential for water is used. The particle-particle particle-mesh method, which automatically includes untruncated long-range terms, is used for the Lennard-Jones and the Coulombic terms. The results show that the long-range correction for the Lennard-Jones term is very important for the calculation of surface tension. It is found that the calculated density and surface tension of water fit well with experimental data for temperatures less than 500 K. Near the critical temperature, the simulation results are off from the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call