Abstract
We have carried out molecular dynamics (MD) simulations of 50 keV accelerated Ar ions, colliding with a Si surface. Using this procedure the amorphous structural region of the Si was found to expand with the progression of the interface region, that lie between the amorphous structure and the crystalline structure, as fluence increased in the depth direction. There has been considerable interest in studying the time development of the behavior of sputtered silicon atoms after being subjected to collisions with the Ar ions. Here, by tracking the atoms in the computational domain, clusters formed during sputtering are classified under various kinds. In this process small cluster of atoms e.g., monomer and dimer, and large cluster of atoms in forms of hillocks are formed where the smaller cluster have their energy higher than that of the large cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.