Abstract

Abstract In this study, the formation mechanism of polyhedron clusters in Cu 50 Ag 50 binary alloy system consisting of 50 000 atoms has been investigated by using molecular dynamics simulations based on embedded atom method (EAM) during the rapid cooling processes. The cluster-type index method (CTIM) has been used to describe the evaluation properties of clusters and the structural development has been investigated by using radial distribution function (RDF). The simulation results show that the amorphous phase is formed by the main bonded pairs of 1551, 1541 and 1431 in the system, and ideal icosahedral (icos) cluster (12 0 12 0) and other basic polyhedron clusters, such as defective icos, Frank–Kasper, Bernal polyhedron, play a critical role under the rapid cooling conditions. The results of our simulations that have been disclosed show that high cooling rate favors the icos and defective icos clusters for model alloy system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call