Abstract

Based on the quantum Sutton-Chen many-body potential, a molecular dynamics simulation was performed to investigate the formation and evolution properties of clusters in liquid Cu with 50 000 atoms. The cluster-type index method(CTIM) was used to describe the complex microstructure transitions. It is demonstrated that the amorphous structures are mainly formed with the three bond-types of 1551, 1541 and 1431 in the system, and the icosahedral cluster (12 0 12 0) and other basic polyhedron clusters of (12 2 8 2), (13 1 10 2), (13 3 6 4), (14 1 10 3), (14 2 8 4) and (14 3 6 5) play a critical and leading role in the transition from liquid to glass. The nano-clusters formed in the system consist of some basic clusters and middle cluster configurations by connecting to each other, and distinguish from those obtained by gaseous deposition and ionic spray. From the results of structural parameter pair distribution function g( r), bond-types and basic cluster-types, it is found that the glass transition temperature T g for liquid metal Cu is about 673 K at the cooling rate of 1.0×10 14 K/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.