Abstract

Molecular dynamics (MD) simulation of the local motion of a polystyrene (PS) chain with anthryl group at the chain end surrounded by benzene molecules was performed and the results were compared with those obtained experimentally by the fluorescence depolarization method. The molecular weight dependence of the relaxation time of the probe obtained by the MD simulation was qualitatively in agreement with the results obtained by the fluorescence depolarization method. We also estimated the molecular weight dependence of the relaxation time for the end-to-end vector. Below the degree of polymerization (DP)≤3, the mean relaxation time Tm for the end-to-end vector was similar to that for the vector corresponding to the transition moment of the probe. With the increase of DP, the Tm for the probe tended to reach an asymptotic value unlike that for the end-to-end vector, which monotonically increased with DP. This indicates that the entire motion of a polymer coil contributes to the local motion to a lesser extent as the molecular weight increases. The MD simulations using artificial restraints showed that the rotational relaxation of the probe at the chain end for a dynamically stiff PS chain is realized by the cooperative rotation of the main chain bonds. The internal modes which takes place below 5 monomer units mainly led to the rotational relaxation of the probe at the PS chain end. Finally, the change of Tm with the position along the PS main chain was examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call