Abstract
We investigate the defect formation energy of boron nitride nanotubes (BNNTs) using molecular dynamics simulation. Although the defect with tetragon–octagon pairs (TOP) is favored in the flat BNNTs cap, BN clusters, and the growth of BNNTs, the formation energy of the TOP defect is significantly higher than that of the pentagon–heptagon pairs (PHP) defect in BNNTs. The PHP defect reduces the effect of the structural distortion caused by the TOP defect, in spite of homoelemental bonds. The instability of the TOP defect generates the structural transformation into BNNTs with no defect at about 1500 K. This mechanism shows that the TOP defect is less favored in case of BNNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.