Abstract

We present here results on molecular dynamics (MD) simulation on two fragments of channel forming antibiotic peptide Alamethicin, containing isoamino butyric acid (Aib). Simulations are carried out in aqueous and membranous environment in a bilayer of 39 molecules of Dimyristoyl phosphatidyl choline (DMPC). The peptides Boc-Pro-Aib-Ala-Aib-OBzl (Alam 1) and Boc-Leu-Aib-Pro-OBzl (Alam 2) were simulated from their crystallographic coordinates. The bilayers were built from two different conformations (A and B) of DMPC reported in crystal data. The P-N dipoles were arranged hexagonally with surface area per lipid molecule 66.5 A degrees 2 and P-P separation across the bilayer 34 A degrees. They were hydrated by 28.6 and 25.5 water molecules per DMPC molecule. Simulations are done using AMBER 4.0 package in constant number volume temperature (NVT) condition for 100 pico seconds (ps) in aqueous environment and 250 ps of equilibrated bilayer. Geometric parameters of lipids as: bilayer thickness, order parameter of the chains, transfraction of chain torsional angles were monitored. We also monitored geometric parameters of the peptides as backbone torsional angles, distances amongst C alpha atoms, angles between C alpha atoms, movement of center of gravity (CG) along and perpendicular to bilayer normal. We find that membrane bilayer is slightly disturbed due to the presence of peptides. In case of alam 2 in water angles phi 1 and phi 3 showed larger variation in water compared to same in the bilayer. The peptide conformation is more stable in DMPC bilayer. However the peptides showed movement along and perpendicular to bilayer normal. This we believe is due to hydrophobic nature of these peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call