Abstract

Brittle fracture in silicon is simulated with molecular dynamics utilizing a modified embedded atom method potential. The simulations produce propagating crack speeds that are in agreement with previous experimental results over a large range of fracture energy. The dynamic fracture toughness is found to be equal to the energy consumed by creating surfaces and lattice defects in agreement with theoretical predictions. The dynamic fracture toughness is approximately 1/3 of the static strain energy release rate, which results in a limiting crack speed of 2/3 of the Rayleigh wave speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.