Abstract

Ballistic effects in simple sodium borosilicate (Na2OB2O3=1) and sodium alumino-borosilicate glasses (Na2O−Al2O3B2O3=1) were investigated using molecular dynamics simulations. Specifically, the glasses were irradiated with heavy projectiles that caused atomic displacements by elastic collisions (displacement cascades) and progressively damaged the bulk glass. The accumulated pressure and internal energy inside the glass were found to saturate with deposited energy. Furthermore, structural analysis of the irradiated glasses revealed several important ballistic effects including a decrease in glass density, depolymerization of the borosilicate network, and increase in chemical mixing, short range and intermediate disorder. The magnitude of radiation damage was found to depend on the glass composition and, in general, alumino-borosilicate glasses were found to be slightly less damaged, after irradiation, as compared to borosilicate glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.