Abstract
Ultrashort-pulsed light-induced nanobubbles gain great attention in research fields such as cancer therapy, optical imaging, and drug delivery. However, the mechanism governing the nucleation and growth of nanobubbles remains controversial. In this study, a molecular dynamics simulation combined with near-field electromagnetic theory is developed to investigate the influence of the localized surface plasmon resonance effect (LSPR) on nanobubble nucleation under various time-length pulsed light and to reveal the energy transfer differences during the nanobubble generation process. The results show that when silver nanoparticles (NPs) are irradiated by a 5 ps shorter-pulsed light, the temperature of the water layer adjacent to the nanoparticle surpasses that of the nanoparticle itself and reaches the spinodal temperature. This leads to nanobubbles' rapid nucleation at approximately 20 ps, which is 80 ps earlier than that irradiated by a 100 ps longer-pulsed light. Comparatively, during longer-pulsed light irradiation, a slower increase in both the temperature of the silver NPs and the water layer results in delayed nucleation of nanobubbles. Therefore, the plasmonic nanobubbles (PNBs) were observed around in 74 and 100 ps when irradiated by 50 and 100 ps longer-pulsed light, respectively. Moreover, the result indicates that the LSPR-induced enhanced electric field by shorter-pulsed light (5 ps) is 2.1 × 1010 V/m, which can accelerate the motion of water molecules surrounding silver NPs, resulting in rapid generation of nanobubbles. However, the intensities of the resonant electric field drop to 5.6 × 109 and 5.0 × 109 V/m when the duration times of pulsed light are 50 and 100 ps, respectively. These results indicate that the energy transfer mechanism of plasmonic nanobubbles (PNBs) under ultrashort-pulsed light irradiation might be very different from that of thermally mediated nanobubbles (TNBs). This work provides new insights into understanding the generation of PNBs induced by ultrashort-pulsed light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.