Abstract

We use a coarse-grained model with both Polymer Reference Interaction Site Model (PRISM) theory and molecular dynamics (MD) simulations to study self-assembly of amphiphilic bottlebrush block copolymers (BCPs) in solution as a function of increasing solvophobicity of the solvophobic blocks. First, we evaluate the ability of PRISM theory to describe and predict structure (e.g., intermolecular pair correlation functions and structure factors) and thermodynamics (e.g., disorder to order/assembled state transition solvophobicity and critical micelle concentration) for solutions of bottlebrush BCPs for varying BCP sequence, composition and solution concentration. Direct comparison of intermolecular pair correlation functions and structure factors from PRISM theory with that from MD simulations shows excellent qualitative, with some quantitative, agreement. Additionally, PRISM theory results at low solvophobicities present signatures of the structures observed in MD simulations at higher solvophobicities. Compa...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call