Abstract

We use molecular dynamics (MD) simulations and Polymer Reference Interaction Site Model (PRISM) theory with a coarse-grained (CG) model to study polymer nanocomposites (PNCs) comprised of polymer grafted nanoparticles in a polymer matrix. Specifically, we describe the impact of increasing graft–matrix attraction on the PNC structure quantified in terms of the extent of interpenetration of matrix and graft chains (i.e., grafted layer wetting) and dispersion/aggregation of the grafted particles in the matrix via intermolecular pair correlation functions and structure factors. Past work on PNCs with attractive graft–matrix interactions had already established that grafted layer wetting–dewetting and dispersion-aggregation are two distinct phase transitions with the former being a continuous transition and the latter being a first-order transition with increasing graft–matrix attraction. In this paper, we go beyond that previous work and show that the dispersion and aggregation of polymer grafted particles in...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.