Abstract

The dynamics of coalescence of small Lennard–Jones droplets as a function of droplet size and temperature is explored with molecular simulations. Droplet sizes vary from several hundred to several thousand molecules, and three different temperatures are explored. As the droplets establish contact, a liquid-like bridge between them forms and grows, ultimately leading to a complete coalescence. The dynamics of the bridge growth are consistent with the “collective molecular jumps” mechanism reported in the literature rather than with the continuous interpretation of the coalescence process in terms of capillary and viscous forces. The effective coalescence time shows a linear growth with the droplet sizes. The influence of the larger droplet size is weaker but non-negligible. Surprisingly, practically no dependence of the coalescence time on the temperature is observed. Comparison of the coalescence times with the droplet lifespan in a suspension shows that for reasonably dense suspensions and small droplet sizes, the coalescence time becomes significant and should be accounted for in the theoretical models of aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.