Abstract
The recreational psychostimulant cocaine inhibits dopamine reuptake from the synapse, resulting in excessive stimulation of postsynaptic dopamine receptors in brain areas associated with reward and addiction. Cocaine binds to and stabilizes the outward- (extracellular-) facing conformation of the dopamine transporter (DAT) protein, while the low abuse potential DAT inhibitor benztropine prefers the inward- (cytoplasmic-) facing conformation. A correlation has been previously postulated between psychostimulant abuse potential and preference for the outward-facing DAT conformation. The 3β-aryltropane cocaine analogs LX10 and LX11, however, differ only in stereochemistry and share a preference for the outward-facing DAT, yet are reported to vary widely in abuse potential in an animal model. In search of the molecular basis for DAT conformation preference, complexes of cocaine, benztropine, LX10 or LX11 bound to each DAT conformation were subjected to 100ns of all-atom molecular dynamics simulation. Results were consistent with previous findings from cysteine accessibility assays used to assess an inhibitor’s DAT conformation preference. The respective 2β- and 2α-substituted phenyltropanes of LX10 and LX11 interacted with hydrophobic regions of the DAT S1 binding site that were inaccessible to cocaine. Solvent accessibility measurements also revealed subtle differences in inhibitor positioning within a given DAT conformation. This work serves to advance our understanding of the conformational selectivity of DAT inhibitors and suggests that MD may be useful in antipsychostimulant therapeutic design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.