Abstract

Molecular dynamics simulations are conducted to examine lattice defect formation in a hexagonal boron nitride lattice by high-energy xenon ion impact. This work seeks to characterize the production of defects which occur under ion irradiation. Lattice defect formation is first examined in single-layer hexagonal boron nitride. Energetic xenon ions over a range of 10eV–10keV are used to randomly impact the central lattice at an angle of 90° (orthogonal to the lattice basal plane). The resulting defects are analyzed for 5000 ion impacts, and results are reported for average single and double vacancy formation per impact. A similar study is conducted for a many-layer hexagonal boron nitride lattice, to assess the influence of additional layers in the formation of point defects as a function of incident ion energy. Ion impacts at both 90° and 45° are examined. The defects formed in the top layer of the many-layer lattice are qualitatively similar to the single layer results, but the presence of the bulk lattice is found to reduce the single vacancy probability in the top-most layer. Point defects are prominent in the lattice sub-layers with increasing ion energy. Orthogonal ion impacts are found to cause the most damage, as measured by the number of vacancy defects produced; the number of vacancies increases linearly with energy, while the number of defects in the oblique impact configuration reaches an asymptotic limit with increasing energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call