Abstract
In the present study, a molecular dynamics simulation approach has been utilized to investigate the effectiveness of four molecules, including Artemisinin, a natural product, and its derivatives Dihydroartemisinin, Artesunate, and Artemisone, on a membrane of a cancerous cell. Performed simulations predicted that Dihydroartemisinin and Artemisone form stronger hydrogen bonds with the cancer membrane, exhibit higher mobility, and have a longer lifetime at the water-membrane interface. Artemisone molecules could penetrate the hydrophobic part of the lipid’s tail, leading to higher fluidity of the cancer membrane. These two compounds exerted the greatest effect on the properties and characteristics of the membrane model while showing stronger anti-cancer effects than the other two compounds. The simulation outcomes and predictions were found to agree with the results of experimental studies. It is noticeable that Dihydroartemisinin and Artemisone enter the cancer cell membrane from their functional group side, while Artemisinin and Artesunate enter from their peroxide ring side.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have