Abstract

In this article, molecular dynamics based simulations were performed to study the effects of functional groups such as hydroxyl and epoxide on the mechanical strength and failure morphology of graphene oxide. Reactive force field potential was used to capture the interatomic interactions between carbon, oxygen and hydrogen atoms. In contrast to previous observations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene. This transition in failure morphology from brittle to ductile was gradual in nature and was observed at lower percentage coverage of graphene in the range of 25–50%. Failure morphologies depict that hydroxyl groups tend to boost the ductility through chains and elongated rings formation at lower percentage coverage. Also, the electrostatic charge redistribution and epoxide to ether transformation were found to be the decisive mechanisms behind the ductile response shown by hydroxyl and epoxide groups, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.