Abstract
A structural investigation of a 1.1 molal BeCl2 aqueous solution has been performed by a molecular dynamics simulation together with X-ray diffraction studies of 1.1 and 5.3 molal BeCl2 aqueous solutions at pH =1. A central force model in combination with an improved intramolecular three-body potential was used for water. The ion-water and ion-ion potentials were derived from ab initio calculations. The structure function obtained from the simulation is in satisfactory agreement with that from X-ray diffraction. The MD simulation of the 1.1 molal solution shows that the hydration shell o f Be2+ consists of six water molecules occupying octahedral sites around a central Be2+. The X-ray scattering data of the 5.3 molal solution indicate that Be2+ has only four water molecules in the first hydration shell. The average coordination number of Cl- is found to be about seven in the 1.1 molal solution from both X-ray diffraction and MD simulation, but Cl- is surrounded on the average by 3.4 water molecules in the 5.3 molal solution. The influence of the small divalent Be2+ on the geometry of its nearest neighbour water molecules is compared with the results of previous simulations of 1.1 molal MgCl2 and CaCl2 solutions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have