Abstract

The development of metastatic melanoma is accompanied by distinct changes in cellular metabolism, most notably a change in strategy for energy production from mitochondrial oxidative phosphorylation to cytoplasmic aerobic glycolysis. This bioenergetic switch occurs at the expense of less-efficient utilization of glucose, but is required for melanoma cells to meet their bioenergetic and biosynthetic demands. Recent work has implicated well-established melanoma drivers such as BRAF, PTEN, MITF, and ARF in the regulation of cellular energy metabolism. The metabolic changes in melanoma cells offer new opportunities for therapeutic intervention. However, inter- and intratumor bioenergetic heterogeneity caused by variation in genetic driver profiles and mitochondrial performance may impact on the effectiveness of treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.