Abstract

Cancer is a disease triggered by an uncontrolled growth of a group of cells usually from a single cell. Chemotherapy is a common and systematic therapy that involves the use of anticancer drugs also known as chemotherapeutical agents to treat cancer. Tyrosine kinases are a subset of protein kinases that are a family of over 90 enzymes that selectively phosphorylate tyrosine residues in various substrates. Receptors with internal tyrosine kinase activity mediate the actions of several growth factors, differentiation factors, and hormones, resulting in the reproduction and differentiation of the affected cells. In the fight against cancer, the platelet-derived growth factor receptor has emerged as a novel target via inhibition of this receptor resulting in the inhibition of tyrosine kinase cascade. Docking investigations were conducted using the Genetic Optimization for Ligand Docking (GOLD) Suite (v. 5.7.1) from the Cambridge Crystallographic Data Center. A high-definition X-ray crystallography of the platelet-derived growth factor protein [Protein Data Bank (PDB) ID 6JOL] was downloaded from the website PDB with a resolution of 2 A. Compounds II, III, VII, and VIII have greater binding energies than the GOLD standard medication sorafenib, which gives Piecewise Linear Potential (PLP) fitness value (85.3). Other ligands exhibit good inhibitory action and docking scores comparable to that of the reference ligand sorafenib.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.