Abstract

BackgroundDevelopment of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells. The PLL forms when cranial placodal cells delaminate and become a coherent, migratory primordium that traverses the length of the fish to form this sensory system. As it migrates, the primordium deposits groups of cells called neuromasts, the specialized organs that contain the mechanosensory hair cells. Therefore the primordium provides both a model for studying collective directional cell migration and the differentiation of sensory cells from multipotent progenitor cells.ResultsThrough the combined use of transgenic fish, Fluorescence Activated Cell Sorting and microarray analysis we identified a repertoire of key genes expressed in the migrating primordium and in differentiated neuromasts. We validated the specific expression in the primordium of a subset of the identified sequences by quantitative RT-PCR, and by in situ hybridization. We also show that interfering with the function of two genes, f11r and cd9b, defects in primordium migration are induced. Finally, pathway construction revealed functional relationships among the genes enriched in the migrating cell population.ConclusionsOur results demonstrate that this is a robust approach to globally analyze tissue-specific expression and we predict that many of the genes identified in this study will show critical functions in developmental events involving collective cell migration and possibly in pathological situations such as tumor metastasis.

Highlights

  • Development of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells

  • We show that comparison of expression profiles from GFP-positive and GFP-negative cells by microarray analysis allows identification of genes highly expressed in the migrating primordium (36 hpf set) and in deposited neuromasts (48 hpf set)

  • We demonstrated its utility for the identification of genes involved in morphogenesis, migration and cell type specification within the migrating PLL primordium in the zebrafish

Read more

Summary

Introduction

Development of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells. The PLL forms when cranial placodal cells delaminate and become a coherent, migratory primordium that traverses the length of the fish to form this sensory system. As it migrates, the primordium deposits groups of cells called neuromasts, the specialized organs that contain the mechanosensory hair cells. Most knowledge about cell migration is based on in vitro studies of single cells in two-dimensional cultures These studies have allowed great progress on the intracellular events that take place during cell motility, elucidating the details of the cellular machinery driving migration. The migrating primordium of the zebrafish posterior lateral line has emerged as an attractive system for genetic analysis of cell migration and tissue organization and for understanding how these processes are controlled [1,2,3,4,5,6,7,8,9]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.