Abstract
Nitrogen-rich compounds are promising candidates for preparing high energetic density materials (HEDMs) and show the potential in the application of propellants, explosives, and pyrotechnics. Two kinds of typical nitrogen-rich compounds, such as tetrazine and triazole, have attracted the attentions in recent years owing to their high densities, good thermal stabilities, and excellent energetic performances. In this work, four series of innovative energetic compounds based on the conjugates of tetrazine and triazole bearing various substituents (-NH2, -NO2, and -NHNO2) were designed. The optimized structures, crystal densities, heats of formation (HOFs) in gas phase and in condensed phase, detonation properties, bond dissociation energies (BDEs), and impact sensitivity (h50) of these compounds were studied systematically via density functional theory (DFT) method. The detonation velocities of four series of compounds are in the range between 7.03 and 8.59kms-1 and their detonation pressures are in the range between 20.6 and 33.1GPa. Results indicated that the linkage of -N=N- bond contributed significantly to HOFs and energy density of the energetic molecules, and 1,2,3-triazole showed better performances than 1,2,4-triazole slightly. As for the same series compounds with different substituents, the compounds with -NHNO2 possessed the highest HOFs (such as A6, B6, C6, D6). In terms of the energetic properties (D and P), four compounds (A7, B7, C7, and D7) exhibited the comparable performance with the widely used hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX) and in the meanwhile displayed superior thermal stability and sensitivity to RDX, which indicated their potential application in the insensitive energetic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.