Abstract
BackgroundForage species of Urochloa are planted in millions of hectares of tropical and subtropical pastures in South America. Most of the planted area is covered with four species (U. ruziziensis, U. brizantha, U. decumbens and U. humidicola). Breeding programs rely on interspecific hybridizations to increase genetic diversity and introgress traits of agronomic importance. Knowledge of phylogenetic relationships is important to optimize compatible hybridizations in Urochloa, where phylogeny has been subject of some controversy. We used next-generation sequencing to assemble the chloroplast genomes of four Urochloa species to investigate their phylogenetic relationships, compute their times of divergence and identify chloroplast DNA markers (microsatellites, SNPs and InDels).ResultsWhole plastid genome sizes were 138,765 bp in U. ruziziensis, 138,945 bp in U. decumbens, 138,946 bp in U. brizantha and 138,976 bp in U. humidicola. Each Urochloa chloroplast genome contained 130 predicted coding regions and structural features that are typical of Panicoid grasses. U. brizantha and U. decumbens chloroplast sequences are highly similar and show reduced SNP, InDel and SSR polymorphism as compared to U. ruziziensis and U. humidicola. Most of the structural and sequence polymorphisms were located in intergenic regions, and reflected phylogenetic distances between species. Divergence of U. humidicola from a common ancestor with the three other Urochloa species was estimated at 9.46 mya. U. ruziziensis, U. decumbens, and U. brizantha formed a clade where the U. ruziziensis lineage would have diverged by 5.67 mya, followed by a recent divergence event between U. decumbens and U. brizantha around 1.6 mya.ConclusionLow-coverage Illumina sequencing allowed the successful sequence analysis of plastid genomes in four species of Urochloa used as forages in the tropics. Pairwise sequence comparisons detected multiple microsatellite, SNP and InDel sites prone to be used as molecular markers in genetic analysis of Urochloa. Our results placed the origin of U. humidicola and U. ruziziensis divergence in the Miocene-Pliocene boundary, and the split between U. brizantha and U. decumbens in the Pleistocene.
Highlights
Forage species of Urochloa are planted in millions of hectares of tropical and subtropical pastures in South America
This resulted in an average coverage in U. brizantha (2791X) that was higher than that observed for U. ruziziensis (2011X)
Use of low-coverage Illumina sequencing allowed the successful assembly and annotation of plastid genomes in four species of Urochloa extensively used as forages in the tropics (U. ruziziensis, U. brizantha, U. decumbens and U. humidicola)
Summary
Most of the planted area is covered with four species (U. ruziziensis, U. brizantha, U. decumbens and U. humidicola). Forage grasses belonging to four species of Urochloa (previously included in Brachiaria) represent 85% of planted pastures in Brazil [1], extending over 115 Mha [2]. These pastures feed 90% of the commercial cattle herd raised in the country, which added up to 209 million heads in 2010 [3]. While U. brizantha, U. decumbens, and U. humidicola are the main species used as forages, interest in U. ruziziensis has grown due to its recent use in crop-livestock integrated systems, which could restore 18 Mha of degraded pastures in the few years [2]. Inclusion of species in either Brachiaria or Urochloa has changed over time [6], and many research groups - forage breeders in particular still refer to them as Brachiaria
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have