Abstract

Emerging applications require single-wall carbon nanotubes (SWCNTs) of well-defined length. Yet the use of length-defined SWCNTs is limited, in part due to the lack of an easily accessible materials preparation method. Here, we present a new strategy for SWCNT length fractionation based on molecular crowding induced cluster formation. We show that the addition of polyethylene glycol (PEG) as a crowding agent into DNA-wrapped SWCNT dispersion leads to the formation of reversible, nematic, and rodlike microclusters, which can be collected by gentle centrifugation. Since shorter SWCNTs form clusters at higher polyethylene glycol concentration, gradual increase in PEG concentration results in length fractionated SWCNTs. Using atomic force microscopy (AFM) we show that fractions with average lengths of 60-500 nm and standard deviations of 30-40% can be obtained. The concept of molecular-crowding-based fractionation should be applicable to other nanoparticle dispersions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.