Abstract

pH-dependent, multisite, surface charge on kaolinite can be explained by proton donor–acceptor reactions occurring simultaneously on Si and Al sites exposed on basal planes and edges. Si site Brønsted acidity at the kaolinite–solution interface differs minimally from that of pure SiO2, whereas Al site acidity increases appreciably over that of pure Al2O3. Increasing temperature decreases the pKvalues of Al and Si proton-exchange sites. Calculated site densities indicate either an elevated participation of edges or substantial contribution from basal planes in the development of surface charge. Independent evidence from scanning force microscopy points to a higher percentage of edge surface area due to thicker particles and basal surface steps than previously assumed. Thus, no basal plane participation is required to explain the site densities determined from proton adsorption isotherms. Molecular modeling of the proton-relaxed kaolinite structure has been used to establish the elevated acidity of edge Al sites and to independently confirm the crystal-chemical controls on surface reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.