Abstract

In many plant species, male-sterile female lines with cytoplasmic male sterility (CMS) or nuclear-controlled environment-sensitive genic male sterility (EGMS) have long been used to efficiently produce hybrids that harness hybrid vigor or heterosis. However, the underlying molecular mechanisms for these applications have only recently been uncovered in a few species. We provide here an update on the understanding of cytoplasmic-nuclear communication based on the discovery of mitochondrial CMS genes and their corresponding nuclear fertility determinants. Recent findings that uncover diverse mechanisms such as epigenetic, transcriptional, and post-transcriptional controls of EGMS by temperature and photoperiod signals are also reviewed. Furthermore, translational research that applies basic knowledge of plant male fertility control to hybrid seed production practice is highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.