Abstract
BackgroundThe zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines.MethodsMicroarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen) and an anti-estrogen (ICI 182,780). Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa).ResultsOur transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE), is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry points for estrogen regulation.ConclusionThe findings demonstrate the use of zebrafish for characterizing estrogen-like environmental carcinogens and anti-estrogen drug screening. From an evolutionary perspective, our findings suggest that estrogen regulation of cell cycle is perhaps one of the earliest forms of steroidal-receptor controlled cellular processes. Our study provides first evidence of molecular conservation of estrogen-responsiveness between zebrafish and human cancer cell lines, hence demonstrating the potential of zebrafish for estrogen-related cancer research.
Highlights
The zebrafish is recognized as a versatile cancer and drug screening model
We anticipated that estrogen-responsive genes would be deregulated in response to E2 treatment and the level of deregulation would be partially suppressed or normalized when the anti-estrogen drug ICI 182 (ICI) is included in the E2 treatment since ICI is known to bind estrogen receptor monomers and prevent dimerization, blocking estrogen receptor signalling to targeted genes [23]
The analysis revealed that treatment of estrogen in zebrafish could induce a large number of estrogen-responsive genes involved in cell cycle, proliferation, DNA replication, DNA damage and repair, recapitulating known mechanisms that are associated with estrogen-dependent carcinogenesis and/or cancer
Summary
The zebrafish is recognized as a versatile cancer and drug screening model. it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. Via non-genomic action, estrogen can cause activation of protein kinases, including mitogen-activated protein kinases, and rapidly increases the levels of secondary messengers, such as cyclic AMP that can cross-talk with other growth factors (epidermal growth factor receptor and insulin-like growth factor 1 receptor) and signaling pathways, that are important in estrogen-dependent cell cycle regulation [2,3]. Another potential mechanism is via estrogen metabolism whereby oxidative metabolites of estrogen are shown to have genotoxic (formation of DNA adducts and oxidative DNA damage), mutagenic, transforming, and carcinogenic effects [5,6]. These evidences along with cancer epidemiological data of reproductive tissues had supported the classification of estrogen as a carcinogen
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have