Abstract

FT-IR and FT-Raman spectra of bis[(E)-anthranyl-9-acrylic]anhydride were recorded and analyzed. The conformational behavior is also investigated. The vibrational wave numbers were calculated using density functional theory (DFT) quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in Infrared and Raman spectra. Potential energy distribution was done using GAR2PED program. The geometrical parameters are compared with related structures. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using Natural Bonding Orbital (NBO) analysis. The Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) analysis are used to determine the charge transfer within the molecule. Molecular Electrostatic Potential (MEP) was performed by the DFT method. The calculated first hyperpolarizability of the title compound is comparable with the reported values of similar derivatives and is 4.23 times that of the standard nonlinear optical (NLO) material urea and the title compound and its derivatives are an attractive object for future studies of nonlinear optical properties. To evaluate the in silico antitumor activity of the title compound molecular docking studies were carried out against protein Bcl-xL. The 1H-NMR spectrum is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.