Abstract
Pine needles represent an important fuel source in coniferous forest systems in the western United States. During forest fires, they can be easily ignited and help sustain flame on the ground. In this study, a comprehensive chemical analysis was conducted to examine oxygenated organic compounds (OOCs) present in PM2.5 formed from burning dry and moist ponderosa pine needles (PPN) in the presence and absence of fine woody debris (FWD). The effect of fuel moisture content (FMC), a key parameter that influence smoke formation, has not received much attention. Therefore, we also investigated the effect of FMC on PM2.5 formation and its composition. Thirty three experiments were conducted at the US Forest Service Fire Science Laboratory. PM2.5 was collected onto 47 mm Teflon filters, and silylated extracts were analyzed by gas chromatography-mass spectrometry. More than fifty OOCs were identified, including levoglucosan and mannosan; n-dodecanoic acid and n-hexadecanoic acid; dihydroabietic acid, and dehydroabietic acid; and a series of intermediate volatile and semivolatile organic compounds. Mass spectra of a wide variety of compounds in electron and chemical ionization mode are provided. Most of these OOCs were identified in this study for the first time in PPN aerosol, although some were previously reported in pine wood and other biomass burning aerosol. Our results show significant changes in the composition and abundance of particles depending on the amount and type of PPN burned. When compared with dry PPN condition, moist PPN showed decreased emissions of PM2.5 and OOCs, due likely to the presence of water in the system that partially suppressed the production of OOCs. Incorporating pine needles in atmospheric models as a contributor to smoke particles generated during forest fires is an essential step towards reducing the current uncertainties regarding the influence of these aerosols on chemical/air mass characteristics, regional meteorology, and the climate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.