Abstract

Surface wettability gradients were used to elongate and align double stranded λ-DNA. Gradients were prepared by vapor phase deposition of octyltrichlorosilane (C8-silane) and fluorinated octyltrichlorosilane (F-silane) precursors. Gradient formation was confirmed by water contact angle and ellipsometric film thickness measurements. Placement of a droplet of aqueous DNA solution on the hydrophobic end of each gradient led to spontaneous motion of the droplet toward the hydrophilic end and deposition of the DNA. Fluorescence imaging of surface-adsorbed YOYO-1 labeled DNA molecules revealed that they are elongated and aligned perpendicular to the droplet-surface contact line at all positions along the gradient, consistent with a dominant role played by surface tension forces in elongating the DNA. The density of adsorbed DNA was found to be greatest on the C8-silane gradient at its hydrophobic end. DNA density decreased toward the hydrophilic end, while the length of the elongated DNA was less dependent on position. The elongation of DNA molecules by spontaneous droplet motion on chemical gradient surfaces has possible applications in DNA barcoding and studies of DNA-protein interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.