Abstract

Potassium channel subfamily K member 3 (KCNK3) has been reported to play important roles in membrane potential conduction, pulmonary hypertension and thermogenesis regulation in mammals. However, its roles remain largely unknown and scarce reports were seen in fish. In the present study, we for the first time identified two kcnk3 genes (kcnk3a and kcnk3b) from the carnivorous Northern snakehead (Channa argus) by molecular cloning and a genomic survey. Subsequently, their transcription changes in response to different feeding status were investigated. Full-length coding sequences of the kcnk3a and kcnk3b genes are 1203 and 1176 bp, encoding 400 and 391 amino acids, respectively. Multiple alignments, 3D-structure prediction and phylogenetic analysis further suggested that these kcnk3 genes may be highly conserved in vertebrates. Tissue distribution analysis by real-time PCR demonstrated that both the snakehead kcnk3s were widely transcribed in majority of the examined tissues but with different distribution patterns. In a short-term (24-h) fasting experiment, we observed that brain kcnk3a and kcnk3b genes showed totally opposite transcription patterns. In a long-term (2-week) fasting and refeeding experiment, we also observed differential change patterns for the brain kcnk3 genes. In summary, our findings suggest that the two kcnk3 genes are close while present different transcription responses to fasting and refeeding. They therefore can be potentially selected as novel target genes for improvement of production and quality of this economically important fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.