Abstract

Insulin-like growth factors (IGFs) are hormones that primarily stimulate and regulate animal physiological processes. In this study, we cloned and identified the open reading frame (ORF) cDNA sequences of IGF family genes: the insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), and insulin-like growth factor 3 (IGF3). We found that IGF1, IGF2, and IGF3 have a total length of 558, 648, and 585 base pairs (bp), which encoded a predicted protein with 185, 215, and 194 amino acids (aa), respectively. Multiple sequences and phylogenetic tree analysis showed that the mature golden pompano IGFs had been conserved and showed high similarities with other teleosts. The tissue distribution experiment showed that IGF1 and IGF2 mRNA levels were highly expressed in the liver of female and male fish. In contrast, IGF3 was highly expressed in the gonads and livers of male and female fish, suggesting a high influence on fish reproduction. The effect of fasting showed that IGF1 and mRNA expression had no significant difference in the liver but significantly decreased after long-term (7 days) fasting in the muscles and started to recover after refeeding. IGF2 mRNA expression showed no significant difference in the liver but had a significant difference in muscles for short-term (2 days) and long-term fasting, which started to recover after refeeding, suggesting muscles are more susceptible to both short-term and long-term fasting. In vitro incubation of 17β-estradiol (E2) was observed to decrease the IGF1 and IGF3 mRNA expression level in a dose- (0.1, 1, and 10 μM) and time- (3, 6, and 12 h) dependent manner. In addition, E2 had no effect on IGF2 mRNA expression levels in a time- and dose-dependent manner. The effect of 17α-methyltestosterone (MT) in vitro incubation was observed to significantly increase the IGF3 mRNA expression level in a time- and dose-dependent manner. MT had no effect on IGF2 mRNA but was observed to decrease the IGF1 mRNA expression in the liver. Taken together, these data indicate that E2 and MT may either increase or decrease IGF expression in fish; this study provides basic knowledge and understanding of the expression and regulation of IGF family genes in relation to the nutritional status, somatic growth, and reproductive endocrinology of golden pompano for aquaculture development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.