Abstract

Iron regulatory proteins (IRPs) control the synthesis of several proteins in iron metabolism by binding to iron-responsive elements (IREs), a hairpin structure in the untranslated region (UTR) of corresponding mRNAs. Binding of IRPs to IREs in the 5' UTR inhibits translation of ferritin heavy and light chain, erythroid aminolevulinic acid synthase, mitochondrial aconitase, and Drosophila succinate dehydrogenase b, whereas IRP binding to IREs in the 3' UTR of transferrin receptor mRNA prolongs mRNA half-life. To identify new targets of IRPs, we devised a method to enrich IRE-containing mRNAs by using recombinant IRP-1 as an affinity matrix. A cDNA library established from enriched mRNA was screened by an RNA-protein band shift assay. This revealed a novel IRE-like sequence in the 3' UTR of a liver-specific mouse mRNA. The newly identified cDNA codes for a protein with high homology to plant glycolate oxidase (GOX). Recombinant protein expressed in bacteria displayed enzymatic GOX activity. Therefore, this cDNA represents the first vertebrate GOX homologue. The IRE-like sequence in mouse GOX exhibited strong binding to IRPs at room temperature. However, it differs from functional IREs by a mismatch in the middle of its upper stem and did not confer iron-dependent regulation in cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.