Abstract
Japanese cedar (Cryptomeria japonica) pollinosis is one of the most prevalent allergic diseases in Japan. Only three C. japonica allergens, Cry j 1, Cry j 2, and CJP-6, have been characterized. The full IgE-binding spectrum of C. japonica pollen allergens demonstrates that many allergens remain to be identified. The aim of this study was to characterize a novel allergen with a high frequency of IgE binding. The cDNA coding for a high-frequency IgE-binding protein, designated CJP-4, was cloned from the total mRNA of C. japonica pollen. The corresponding native allergen was purified by affinity precipitation with colloidal chitin and gel chromatography. The IgE-binding ability of purified native CJP-4 was characterized by ELISA and ELISA inhibition. The CJP-4 cDNA encoded 281 amino acids with significant sequence homology to class IV chitinases. Purified native CJP-4, migrated as a homogeneous 34-kDa protein on SDS-PAGE, revealed endochitinase activity on native PAGE. The purified protein displayed the ability to bind IgE from all patients tested (31/31) in ELISA, whereas Cry j 1 bound to IgE at a 71% frequency (22/31). Pre-incubation with latex C-serum completely inhibited the reaction of pooled sera IgE from patients with C. japonica pollinosis and/or latex allergy to purified CJP-4. We identified CJP-4 as a novel and fourth C. japonica chitinase allergen with high IgE-binding frequency. The competitive IgE-binding profile between C. japonica chitinase and latex C-serum indicated that C. japonica chitinase should be an important pan-allergen in C. japonica pollen.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have