Abstract

Glutathione S-transferases (GSTs) are the superfamily of multifunctional detoxification isoenzymes and play crucial roles in innate immunity. In the present study, a theta class GST homology was identified from A. japonicus (designated as AjGST-θ) by RACE approaches. The full-length cDNA of AjGST-θ was of 1013 bp encoded a cytosolic protein of 231 amino acids residues. Structural analysis revealed that AjGST-θ processed the characteristic N-terminal GSH-binding site (G-site) and the C-terminal hydrophobic substrate binding site (H-site). Multiple sequence alignment and phylogenetic analysis together supported that AjGST-θ belonged to a new member of theta class GST protein subfamily. Spatial expression analysis revealed that AjGST-θ was ubiquitously expressed in all examined tissues with the larger magnitude in intestine. The Vibrio splendidus challenge in vivo and LPS stimulation in vitro could both significantly up-regulate the mRNA expression of AjGST-θ when compared with control group. The recombinant protein was expressed in Escherichia coli and the purified AjGST-θ showed high activity with GST substrate. Meantime, disc diffusion assay showed that recombinant AjGST-θ protein could markedly improve bacterial growth under Cumene hydroperoxide exposure. More importantly, the recombinant AjGST-θ could effectively prevent primary coelomocytes apoptosis after LPS exposure. Our present findings suggested that AjGST-θ might play significantly roles in the modulation of immune response and protect cells from pathogens infection in A. japonicus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call