Abstract

Glutathione S-Transferases (GSTs) are multifunctional cytosolic isoenzymes, distinctly known as phase II detoxification enzymes. GSTs play a significant role in cellular defense against toxicity and have been identified in nearly all organisms studied to date, from bacteria to mammals. In this study, we have identified a full-length cDNA of the theta class GST from Ruditapes philippinarum (RpGSTθ), an important commercial edible molluscan species. RpGSTθ was cloned and the recombinant protein expressed, in order to study its biochemical characteristics and determine its physiological activities. The cDNA comprised an ORF of 693 bp, encoding 231 amino acids with a predicted molecular mass of 27 kDa and an isoelectric point of 8.2. Sequence analysis revealed that RpGSTθ possessed characteristic conserved domains of the GST_N family, Class Theta subfamily (PSSM: cd03050) and GST_C_family Super family (PSSM: cl02776). Phylogenetic analysis showed that RpGSTθ evolutionarily linked with other theta class homologues. The recombinant protein was expressed in Escherichia coli BL21(DE3) cells and the purified enzyme showed high activity with GST substrates like CDNB and 4-NBC. Glutathione dependent peroxidase activity of GST, investigated with cumene hydroperoxide as substrate affirmed the antioxidant property of rRpGSTθ. By quantitative PCR, RpGSTθ was found to be ubiquitously expressed in all tissues examined, with the highest levels occurring in gills, mantle, and hemocytes. Since GSTs may act as detoxification enzymes to mediate immune defense, the effects of pathogen associated molecular pattern, lipopolysaccharide and intact Vibrio tapetis bacteria challenge on RpGSTθ gene transcription were studied. Furthermore, the RpGSTθ expression changes induced by immune challenges were similar to those of the antioxidant defense enzyme manganese superoxide dismutase (RpMnSOD). To our knowledge, RpGSTθ is the first molluscan theta class GST reported, and its immune-related role in Manila clam may provide insights into potential therapeutic targets for protecting this important aquaculture species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call