Abstract
The nucleotide sequence and mechanism of action of a tetracycline resistance gene from Mycobacterium smegmatis were determined. Analysis of a 2.2-kb sequence fragment showed the presence of one open reading frame, designated tet(V), encoding a 419-amino-acid protein (molecular weight, 44,610) with at least 10 transmembrane domains. A database search showed that the gene is homologous to membrane-associated antibiotic efflux pump proteins but not to any known tetracycline efflux pumps. The steady-state accumulation level of tetracycline by M. smegmatis harboring a plasmid carrying the tet(V) gene was about fourfold lower than that of the parental strain. Furthermore, the energy uncoupler carbonyl cyanide m-chlorophenylhydrazone blocked tetracycline efflux in deenergized cells. These results suggest that the tet(V) gene codes for a drug antiporter which uses the proton motive force for the active efflux of tetracycline. By primer-specific amplification the gene appears to be restricted to M. smegmatis and M. fortuitum.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have