Abstract

Uncinaria stenocephala belongs to Ancylostomatidae family. Members of this family - hookworms - infect millions of people and animals worldwide. U. stenocephala is most pathogenic in dogs and other Canidae, which are the main hosts, and infection causes anemia or even death. So far no effective hookworm vaccine has been developed that is economically viable. Attempts to identify vaccine antigens have led to a group of aspartic proteases, which play a key role in parasite feeding, migration through host tissues and immune evasion. The cDNA of an aspartic protease from U. stenocephala was cloned using the RACE-PCR method. Computational analysis showed that the cDNA encodes a 447 amino acid protein with a molecular mass of 52kDa that shows high homology to aspartic proteases from related hookworms. Analysis identified 1 potential N-glycosylation site, 3 potential disulfide bonds and no O-glycosylation sites. The recombinant protein was expressed in Escherichia coli followed by purification and mouse immunization. Using raised anti-Us-APR-1(2) (Uncinaria stenocephala Aspartic protease-1) serum the presence of Us-APR-1 in the adult stage of U. stenocephala and the expression of homologous protease in L3 and adult stages of A. ceylanicum was confirmed. This analysis is the first phase of work exploring the biological role of Us-APR-1 in parasite-host interactions and raises hope for successful vaccine development against Uncinaria sp. and possibly Ancylostoma sp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.