Abstract

BackgroundGossypium hirsutum L. (cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited due to the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and non-ruminant animals. To date, some progress has been made in the pigment gland formation, but the underlying molecular mechanism of its formation was still unclear.ResultsIn this study, we identified an AP2/ERF transcription factor named GhERF105 (GH_A12G2166), which was involved in the regulation of gland pigmentation by the comparative transcriptome analysis of the leaf of glanded and glandless plants. It encoded an ERF protein containing a converved AP2 domain which was localized in the nucleus with transcriptional activity, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing (VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants.ConclusionsThese results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate ‘glandless-seed’ and ‘glanded-plant’ cotton cultivar.

Highlights

  • Gossypium hirsutum L. is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products

  • The GhERF105 gene (GenBank ID: GH_A12G2166; accession number: XM_016865675), which was cloned from the leaves of CCRI12, is 711 bp in length containing an open reading frame with initial code (ATG) and terminal code (TAA) (Fig. S1)

  • Based on the comparative transcriptome analysis of the leaf from two pairs of glanded and glandless cotton plants, we identified an ethylene response factor named GhERF105 that was involved in the regulation of gland pigmentation, The GhERF105 gene, which was cloned from the leaves of CCRI12, had 711 bp in length containing an open reading frame with initial code (ATG) and terminal code (TAA), The predicted protein comprised of 236 amino acids with relative molecular weight of 26.3 kDa and isoelectric point of 7.72 containing an Ethylene responsive factor (ERF) conserved DNA binding domain

Read more

Summary

Introduction

Gossypium hirsutum L. (cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. A single completely dominant glandless G. barbadense mutant (Gl2e) named ‘Bahtim 110’ (G. barbadense L), which is a dominant allele of Gl2 that shows epistatic effect on Gl3, was originally discovered in Egypt by the irradiation mutagenesis of the sea-island cotton ‘Giza 45’ seeds with 32P, and could efficiently inhibit the formation of pigment gland [28,29,30,31]. CGF3 (Cotton Gland Formation), identical to GoPGF gene, controls the gland morphogenesis directly, and regulates gossypol biosynthesis indirectly [34]. CGP1 (Cotton Gland Pigmentation 1), which interacted with GoPGF, was identified by the comparative transcriptome analysis of glanded and glandless cotton accessions and involved in the regulation of gossypol biosynthesis but not gland formation [35]. The specific mechanism of pigment gland formation still remains unclear

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call