Abstract

A cDNA encoding a chymotrypsinogen-like protein in midguts of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) was cloned and sequenced. The 901 bp cDNA contains an 816-nucleotide open reading frame encoding 272-amino acids. The predicted molecular mass and pI of the mature enzyme are 23.7 kDa and 4.64, respectively. The encoded protein includes amino acid sequence motifs that are conserved with 5 homologous chymotrypsinogen proteins from other insects. Features of the putative chymotrypsin-like protein from R. dominica include the serine proteinase active site (His(90), Asp(133), Ser(226)), conserved cysteine residues for disulfide bridges, the residues (Gly(220), Gly(243), Asp(252)) that determine chymotrypsin specificity, and both zymogen activation and signal peptides. A TPCK-sensitive caseinolytic protein (P6) with an estimated molecular mass of 24 kDa is present in midgut extracts of R. dominica and can be resolved by electrophoresis on 4-16% polyacrylamide gels. The molecular mass of this caseinolytic enzyme is similar to that of the chymotrypsin deduced from cDNA. Midgut extracts of R. dominica readily hydrolyzed azocasein and N-succinyl-alanine-alanine-proline-phenylalanine-p- nitroanilide (SAAPFpNA), a chymotrypsin-specific substrate. Properties of the enzymes responsible for these activities were partially characterized with respect to distribution in the gut, optimum pH, and sensitivity toward selected proteinase inhibitors. Optimal activity against both azocasein and SAAPFpNA occurs in a broad pH range from about 7 to 10. Both azocasein and SAAPFpNA activities, located primarily in the anterior midgut region, are inhibited by aprotinin, phenylmethyl sulphonylfluoride (PMSF), and soybean trypsin inhibitor (STI). TPCK (N-alpha-tosyl-L-phenylalanine chloromethyl ketone) and chymostatin inhibited more than 60% of SAAPFpNA but only about 10-20% of azocasein activity. These results provide additional evidence for the presence of serine proteinases, including chymotrypsin, in midguts of R. dominica. Arch. Insect Biochem. Physiol. 43:173-184, 2000.Published 2000 Wiley-Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call