Abstract

HighlightsSingle kernel mass and particle density were not significantly affected by the number of rice weevils feeding within a corn kernel and lesser grain borers feeding within a wheat kernel.In both corn and wheat, single kernel mass decreased after the larval stage of internally feeding insects.Particle density increased linearly with insect age for both rice weevils in corn and lesser grain borer in wheat.The increasing particle density while the kernel mass was being eroded indicates that the kernel internal void was detected by the gas pycnometer employed for measurement of the true volume of grain kernels.Abstract. To model the dynamics of insect infestation in a grain handling system using the discrete element method (DEM), physical properties of the infested kernels compared to their sound counterparts are needed, specifically particle density and single kernel mass of infested kernels. Thus, the objective of this study was to determine the particle density and single kernel mass of internally infested kernels as affected by insect age. Corn and wheat were infested with internal feeders: rice weevil (RW), Sitophilus oryzae (L.), in corn and lesser grain borer (LGB), Rhyzopertha dominica (F.), in wheat. The internal feeders were allowed to grow and mature inside the kernels and properties were measured for representative samples selected using X-ray imaging approximately 14, 28, 35, and 42 days after the end of a 4-day oviposition period. The measured kernel physical properties were not affected by the number of internal insects per kernel. In both corn and wheat, single kernel mass decreased after the larval stage of internally feeding insects. Single kernel mass decreased from 374 mg in sound corn to 346 mg in corn with pre-emerged RW adults and from 31.4 mg in sound wheat to 25.9 mg in wheat with pre-emerged LGB adults. Particle density increased with insect age for both RW in corn and LGB in wheat with a linear trend. The increasing particle density while the kernel mass eroded indicates that kernel internal void was detected by the gas pycnometer employed for measurement of the true volume of grain kernels. Data obtained from this study enables effective DEM modeling of grain commingling of insect-infested and sound grain kernels in grain handling systems. Keywords: Corn, Insect age, Internal feeders, Insect infestation, Lesser grain borer, Particle density, Rice weevil, Single kernel mass, Wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call